'*********************************************************** '* SOLVING DIFFERENTIAL EQUATIONS OF ORDER 1 * '* (Prediction-correction method) * '* ------------------------------------------------------- * '* Reference: * '* "Analyse en Turbo Pascal versions 5.5 et 6.0 By Marc * '* DUCAMP et Alain REVERCHON - Eyrolles, Paris 1991" * '* [BIBLI 03]. * '* * '* Basic version by J-P Moreau, Paris * '* (www.jpmoreau.fr) * '* ------------------------------------------------------- * '* SAMPLE RUN: * '* (Integrate y'=(4xy+4x*sqrt(y))/(1+xý) from x=0 to x=10 * '* with initial condition y(0)=1) * '* * '* Input x begin: 0 * '* Input x end : 10 * '* Input y begin: 1 * '* Input number of points: 10 * '* Input finesse: 10 * '* * '* X Y * '* ----------------------------- * '* 1.000000 8.999984 * '* 2.000000 80.999881 * '* 3.000000 360.999496 * '* 4.000000 1088.998512 * '* 5.000000 2600.996484 * '* 6.000000 5328.992838 * '* 7.000000 9800.986875 * '* 8.000000 16640.977767 * '* 9.000000 26568.964559 * '* 10.000000 40400.946171 * '* ----------------------------- * '* * * '*********************************************************** DefInt I-N DefDbl A-H, O-Z MAXDATA = 100 Dim tx(MAXDATA), ty(MAXDATA) 'integer ifi, n Cls Print input " Input x begin: ", xi input " Input x end : ", xf input " Input y begin: ", yi input " Input number of points: ", n input " Input finesse: ", ifi GoSub 3000 'call equadiff_pc(tx,ty,xi,xf,yi,n,ifi) ' print results f$ = "#####.###### #####.######" Print Print " X Y " Print " -----------------------------" For i = 1 To n Print using; f$; tx(i); ty(i) Next i Print " -----------------------------" Print End 'of main program 1000 'Function y'=(4xy+4x*sqrt(y))/(1+xý) If yy > 0 Then f = (4 * xx * yy + 4 * xx * Sqr(yy)) / (1 + xx * xx) Else f = 0 End If Return 2000 'classical Runge-Kutta method of order 4 xx = X: yy = y: GoSub 1000: a = h * f xx = X + h / 2: yy = y + a / 2: GoSub 1000: B = h * f yy = y + B / 2: GoSub 1000: c = h * f X = X + h: xx = X: yy = y + c: GoSub 1000: d = h * f y = y + (a + B + B + c + c + d) / 6 Return '********************************************************** '* Prediction-correction method * '* ------------------------------------------------------ * '* INPUTS: * '* xi begin x value * '* xf end x value * '* yi begin y value (at x=xi) * '* n number of points to calculate * '* ifi finesse (number of intermediate * '* points (for example 10) * '* OUTPUTS: * '* tx table of x values (m values) * '* ty table of y values (m values) * '* * '* DESCRIPTION: * '* The algorithm has the following steps: * '* 1. calculate y2, y3, y4 using a classical Runge- * '* Kutta method of order 4. * '* 2. from point (x4, y4), first estimate y(n+1) by * '* formula: * '* y(n+1)=y(n) + h/24(55y'(n)-59y'(n-1)+37y'(n-2) * '* -9y'(n-3) * '* then continue with formula: * '* y(n+1)=y(n) + h/24(9y'(n+1)+19y'(n)-5y'(n-1) * '* +y'(n-2), * '* noting that y'(n+1)=f(x(n+1),y(n+1)) with the * '* estimated value of y(n+1), until convergence is * '* obtained. * '********************************************************** 3000 'Subroutine equadiff_pc(tx, ty, xi, xf, yi, n, ifi) Dim p(3) z = yi m = n If (m > MAXDATA) Or (ifi < 1) Then Return h = (xf - xi) / ifi / m xx = xi: yy = yi: GoSub 1000: p(3) = f tx(0) = xi: ty(0) = yi k = 0 For i = 1 To m ni = (i - 1) * ifi - 1 For j = 1 To ifi X = xi + h * (ni + j) k = k + 1 If (k < 4) Then 'call runge_kutta(h,x,z) y = z: GoSub 2000: z = y xx = X: yy = z: GoSub 1000: p(3 - k) = f Else X = X + h w = z + (h / 24) * (55 * p(0) - 59 * p(1) + 37 * p(2) - 9 * p(3)) 'continue 10 y = w xx = X: yy = y: GoSub 1000 w = z + (h / 24) * (9 * f + 19 * p(0) - 5 * p(1) + p(2)) If Abs(y - w) > 0.0000000001 Then GoTo 10 z = w: p(3) = p(2): p(2) = p(1) p(1) = p(0): xx = X: yy = z: GoSub 1000: p(0) = f End If Next j 'j loop tx(i) = X: ty(i) = z Next i 'i loop Return ' end of file teqdifpc.bas
No comments:
Post a Comment